Tota	l No.	of Questions : 8] SEAT No. :	\neg
P9 (76	[Total No. of Pages	: 2
	,,,	[6179]-201	
		S.E. (Civil)	
		GEOTECHNICAL ENGINEERING	
		(2019 Pattern) (Semester - IV) (201008)	
		[Max. Marks:	70
		Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.	
		Figures to the right indicate full marks.	
Q 1)	a)	Explain Standard Proctor Compaction Test with neat sketch.	[6]
	b)	A concentrated load of 30 kN acts on the surface of homogenous s	oil
	,	mass of large extent. Find the stress intensity at a depth of 8m a	
		horizontal distance of 2.5 m by using Boussinesq's theory. Compare	the
	1	value with Westergaard's theory.	[6]
	c)	Enlist and explain factors affecting compaction.	[5]
		OR	
<i>Q2</i>)	a)	Differentiate between Standard proctor Test and Modified Proctor Te	(
		Draw typical compaction curve for both the tests.	[6]
	b)	State and explain the terms involved in Boussinesq's point load	nd
		circular load equation for vertical stress determination.	[6]
	c)	Write a note on Proctor needle test with neat sketch.	[5]
Q 3)	a)	Explain with the help of Mohr circle how shear strength parameters determined in direct shear test.	are [6]
	b)	Explain the types of triaxial test according to drainage conditions	[6]

OR

when failure took place. Determine underained shear strength.

c)

A vane 75 mm in diameter and 150 mm in height was pressed into clay in

a bore hole. The torque was applied and gradually increased to 50 N.m

[5]

Q4)	a)	A soil has an angle of shearing resistance 18° and cohesion of 30 kN/m ² . If the specimen of this soil is subjected to triaxial compression test,
		determine the value of cell pressure for failure to occur at a total stress of
		300 kN/m ² . Also calculate deviator stress. [7]
	b)	State and explain factors affecting shear strength of cohesive soil. [6]
	c)	Define total and effective stresses. [4]
		0, 9.
Q 5)	a)	In a cohesionless soil deposit having unit weight of 15 kN/m ³ and angle
		of internal friction 30°. Determine resultant active and passive earth
		pressure and their positions, if the height of retaining wall is 10 m. [6]
	b)	Explain step by step procedure for determination of lateral earth pressure
		graphically by Rebhann's method with neat sketch. [6]
	c)	Discuss how to calculate earth pressure of soil for Backfill with uniform
		surcharge. [6]
		OR OR
Q6)	a)	Define the various types of earth pressures w.r.t. wall movement with
		Sketches. [6]
	b)	Explain step by step procedure for determination of lateral earth pressure
		graphically by Culmann's method with neat sketch. [6]
	c)	A smooth backed vertical wall is 6.3 m high and retains a soil with a bulk
		unit weight of 18 kNm ³ and angle of internal friction 18°. If the soil
		surface carries a uniformly distributed load of 5 kN/m ² . Determine total
		active earth pressure and its point of application. [6]
<i>Q7</i>)	a)	Explain classification of slopes based on different criteria. [6]
	b)	What is Taylor's Stability Number? How it can be used to chek the
		stability of slopes? [6]
	c)	Classify the different modes of failure of finite and infinite slope. [6]
		OR
Q 8)	a)	Write a note on causes and remedial measures of landslide. [6]
	b)	Explain 'Swedish Slip Circle' method for stability analysis of finite slope.
		[6]
	c)	Derive the expression for factor of safety for dry infinite slope in sandy
		soils. [6]
		\$\$ \$\$ \$\$\forall \tag{\sqrt{\gamma}}\$
		` 🗸